Culture informatique 1

Document ressource

I. INTRODUCTION A LA NOTATION BINAIRE, BITS ET OCTETS

Les ordinateurs **numérisent** (signifie : coder en nombre) l'information en utilisant la notation **binaire**. Toutes les informations, **quelle que soit leur forme** (textes, sons, images fixes ou animées, nombres ...) sont transformées en une suite de 0 (zéro) ou de 1.

Exemples : la lettre A est codée 01

01000001

le nombre 10

000010

Image en noir et blanc

Grille de codage							
0	0	1	1	1	1	0	0
0	1	0	0	0	0	1	0
1	0	0	0	0	0	0	1
1	0	1	0	0	1	0	1
1	0	0	0	0	0	0	1
0	1	0	1	1	0	1	0
0	1	0	0	0	0	1	0
0	0	1	1	1	1	0	0

De la même manière **un son** peut se coder sous forme binaire.

Chaque information peut donc être codée comme une suite de « chiffres binaires », (binary digit en anglais) que l'on appelle les **bits** : 0.

Chaque bit ne peut prendre que deux valeurs : 0 ou 1.

0 | 1

0

Les bits sont regroupés en paquets de huit : les **octets** (byte en anglais) : 00001010

Avec un bit il est ainsi possible d'obtenir deux états: soit 1, soit 0.

2 bits rendent possible l'obtention de quatre états différents (2*2):

Avec 3 bits il est possible d'obtenir huit états différents (2*2*2):

Pour un groupe de n bits, il est possible de représenter 2ⁿ valeurs.

Un octet permet donc de représenter 2⁸ = 2x2x2x2x2x2x2x2 = 256 valeurs différentes.

Pour un octet, le plus petit nombre est 0 (représenté par huit zéros 0000000), le plus grand es 255 (représenté par huit chiffre "un" 11111111).

┛.			
	0	0	0
	0	0	1
	0	1	0
•	0	1	1
	1	0	0
st	1	0	1
	1	1	0
	1	1	1

Transformer un octet en nombre décimal

Le plus petit bit d'un octet, situé à droite vaut 20=1

Le deuxième vaut $2^1 = 2$

Le troisième vaut $2^2 = 2 \times 2 = 4$, le quatrième vaut 8, le cinquième 16, le sixième 32

Exemple: 0 1 0 1 1 0 11 en notation binaire = 91 en notation décimale

27 =128	$2^6 = 64$	$2^5 = 32$	2 ⁴ =16	$2^3 = 8$	$2^2 = 4$	2 ¹ =2	2 ⁰ =1	
0	1	0	1	1	0	1	1	$= 0 + 2^6 + 0 + 2^4 + 2^3 + 0 + 2^1 + 2^0 =$
0	64	0	16	8	0	2	1	= 0 + 64 + 0 + 16 + 8 + 4 + 2 + 1 = 9

Unités de mesure de quantité d'information : l'octet (Byte en anglais¹)

Un kilooctet (ko ou kB) = 1000 octets²

= 8000 bits

• Un Mégaoctet (**Mo** ou **MB**) = 1000 Ko

= 1 000 000 octets = 8 Mbits

• Un Gigaoctet (**Go** ou **GB**) = 1000 Mo

= 1 000 000 000 octets = 8 Gbits

• Un Téraoctet (**To** ou **TB**) = 1000 Go

= 1 000 000 000 000 octets = 8 Tbits

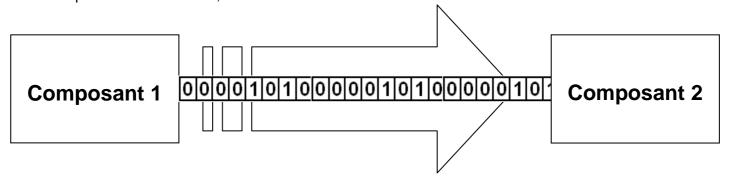
Quelques ordres de grandeurs de « contenants » : une <u>disquette</u> a une capacité de 1,4 Mo. Un <u>disque dur</u> actuel moyen (en 2008) a une capacité de 320 Go. Un <u>CD-ROM</u> contient 700 Mo. Un <u>DVD-Rom</u> contient 4,7 Go d'information. La mémoire vive d'un ordinateur a une capacité de 2 Go.

Quelques ordres de grandeurs de « contenus » : Une page de traitement de texte comme celle-ci occupe environ 50 ko. Un document sonore de 5 minutes (en mp3) occupe 4 Mo. Une vidéo de qualité moyenne durant 10 minutes occupe environ 20 Mo. Un film de 2 heures occupe 4 Go.

¹ Les informaticiens du Monde entier préfèrent le terme anglais byte (symbole B majuscule) à octet, seulement utilisé en France.

² L'organisme de standardisation IEC en a décidé ainsi en décembre 1998, auparavant 1Ko valait $2^{10} = 1024$ octets

Culture informatique 2



Document ressource

II. LE TAUX DE TRANSFERT : LE DEBIT D'INFORMATION

L'informatique est la science du **traitement automatique de l'information**. Traiter l'information signifie **modifier** l'information.

Traiter l'information nécessite de transmettre (déplacer) l'information d'un composant de l'ordinateur vers un autre composant de l'ordinateur, comme sur le schéma suivant.

Le **Taux de transfert** correspond à la quantité d'informations transmise par seconde.

Taux de transfert =

Quantité d'information transmise (en octets ou Ko)

Durée de la transmission (en secondes)

Elle se mesure et s'exprime donc en kilo-octets par seconde³ (ou **Ko/s**)⁴. Les multiples de cette unité sont le Méga-octet par seconde (**Mo/s**), le Giga-octet par seconde (**Go/s**) etc ...

Exemples : le taux de transfert d'un modem est égal à 8 Ko/s, celui d'un disque dur ou un lecteur de CD-ROM à 6 Mo/s.

Cette notion de **taux de transfert** est primordiale pour suivre et comprendre l'évolution technologique du matériel informatique car la rapidité de traitement des ordinateurs est limitée par les taux de transferts entre leurs différents composants.

Il est donc impératif de savoir calculer :

- un taux de transfert à l'aide de la formule encadrée plus haut,
- la durée d'une transmission :

Durée de transmission (en s) =

Quantité d'information transmise (en octets ou Ko)

Taux de transfert (en Ko/s)

- la quantité d'information transmise :

Quantité d'information transmise (en Ko) = Taux de transfert (Ko/s) x Durée de la transmission (en s)

³ Les informaticiens du monde entier préfèrent utiliser le kB / s : le kilobyte par seconde (voir note de page précédente)

⁴ Une autre unité est parfois utilisée pour les taux de transferts : le bit / s (multiples kbit/s, Mbits/s ...) notée kbit/s ou kb/s. Exemple de conversion : 1 kB/s = 8 kbit/s. Préférer le kB/s (ou le ko/s) au kbit/s ou kb/s qui prêtent à confusion.